

Journal homepage: www.ajids.dmu.edu.et

Volume 9(1), June 2025

Comparative Decomposition and Nutrient Release of Leaf Litter from Three Indigenous Tree Species in E/Gojjam, North Central Ethiopia

Kiros Getachew Belachew*, Berhanu Tadesse Beyene

Department of Natural Resources Management, College of Agriculture and Natural Resource, Debre Markos University, Debre Markos, Ethiopia

*Corresponding author email: kiros getachew@dmu.edu.et

Abstract

A field- and laboratory-based study investigated the nutrient composition and decomposition rates of leaf litter from three indigenous tree species: Cordia africana, Croton macrostachyus, and Hagenia abyssinica. Fifteen leaf samples from each species grown under similar soil, topographic, and age conditions were collected. For the decomposition study, 36 litterbags, each containing 10 g of oven-dried leaf litter, were placed on the soil surface in randomized plots. Leaf litter samples were analysed for total nitrogen, phosphorus, potassium, carbon, lignin, and polyphenols using standard protocols, including micro-Kjeldahl digestion, wet acid digestion, flame photometry, dry combustion, and spectrophotometer.. Results indicated that C. macrostachyus had higher potassium content than C. africana and H. abyssinica. Both C. macrostachyus and H. abyssinica exhibited higher nitrogen and phosphorus but lower carbon levels compared to C. africana. Conversely, C. africana showed higher concentrations of C:N ratio, lignin, lignin/N, polyphenol, polyphenol/N, and (lignin + polyphenol)/N. Decomposition patterns varied significantly among species: H. abyssinica litter decomposed within 2–3 months, C. macrostachyus within 3-4 months, while C. africana required 7-8 months. Mass loss and nutrient release were substantially greater in H. abyssinica and C. macrostachyus than in C. africana. The findings suggest that integrating all three species into agroforestry systems can enhance soil fertility and crop productivity, as C. africana provides extended soil cover while H. abyssinica and C. macrostachyus rapidly release nutrients.

Keywords: Agroforestry, *Cordia africana*, *Croton macrostachyus*, Decomposition, *Hagenia abyssinica*, Leaf litter, Nutrient release.

1. Introduction

Nutrient and energy transfer from plants to the soil is largely initiated by litterfall, making it a fundamental component of nutrient cycling. In agroforestry systems, the effectiveness of nutrient cycling is closely tied to the decomposition rate of tree leaf litter, which returns organic matter and nutrients to the soil (Sarvade et al., 2014). As a key element of the biogeochemical cycle, litter fall contributes organic material, energy, and essential nutrients from

vegetation to the soil environment (Zhu et al., 2021).

Soil formation and nutrient cycling are influenced by litter fall decomposition, which generates organic matter (Hobbie, 2015). Decomposition is mainly governed by environmental factors, the chemical composition of leaf litter, and the presence of decomposing organisms (Bani et al., 2018). Research has shown notable differences in leaf litter decomposition rates The role species. of litter among decomposition in regulating ecosystem carbon storage and nutrient cycling is vital, as it affects both the nutrient status and productivity of vegetation (Giweta, 2020). Nutrient dynamics related to decomposition rates are critical for determining the nutrient status of an ecosystem (Robertson & Paul, 2000).

Rapid loss of hydrosoluble chemicals, increased microbial activity, and nutrient leaching and release are features of the first stage of decomposition (Hossain et al., 2014). Although components such as lignin and polyphenols become more important in later phases, studies indicate that nitrogen (N) can predict breakdown rates in the beginning (He et al., 2019). Additionally, it has been discovered that the initial ratios of lignin, polyphenol, lignin:N, lignin + polyphenol:N, and C:N influence the rates of mineralization and breakdown (Vahdat et al., 2011).

Hagenia abyssinica, Croton machrostchyus, and Cordia africana are the three indigenous tree species that were the subject of this

study because they improve the physical and chemical characteristics of the soil, which greatly increases crop output. These plants are well known among Ethiopian farmers and provide a number of advantages, including fuel wood, shade, fodder, lumber, and soil conservation (Bekele & Abebe, 2018). Despite their significance in crop productivity and soil fertility, these species have not received much attention. Since leaf litter is a significant contributor to nutrient return through aboveground litterfall, this research project intended to investigate the chemical makeup of leaf litter and its breakdown to release nutrients into the soil (González-Rodríguez et al., 2011)

2. Materials and Methods

2.1.Study area

The study was carried out at the Wonka Peasant Association in the Gozamin District, East Gojjam Zone, Ethiopia, which is located between latitudes 10 °20' N and longitudes 37 °43' E (Figure 1). The average yearly temperature is 18 °C, and the elevation is 2200 m above sea level. This region has both plateaus and valleys. The region receives 1628 mm of rain each year. Litosol, Acrisol, Regosol, Nitisol, Vertisoil, and Luvisol are the categories under which the soils are categorised. The Gozamin District Agricultural Report (2023) states that the most prevalent tree and shrub species are Hagenia abyssinica, Croton macrostachyus, Cordia africana, Milletia ferrugina, Accacia decurrens, Accacia saligna, Gravellia robusta, Sesbania sesban, and Leucina leucocephala.

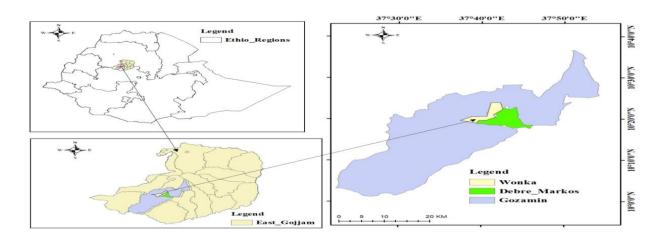


Figure 1. Map of the study site

2.2.Leaf collection and decomposition

Due to the fact that May 2023 was a peak leaf litter fall month in the study location, nine sampling trees (3 tree species \times 3 replications) established in similar soil and topography with similar ages were chosen at random by drawing lots to have their abscised leaves collected. Abscised leaves were yellow in all three species, making them easy to identify from green leaves. According to (Kumar & Kunhamu, 2022)., the branches of particular trees were chopped off, and the leaves that had been abscised were collected from the ground. For each unique sampling tree, at least fifteen leaves were taken from every canopy location and handled independently. After air drying, the samples were oven-dried for 24 hours at 65 °C. According to Mahari (2014), a portion of each sample was broken into powder and run through a 0.5 mm mesh screen for further chemical analysis to be conducted in the lab. Another portion was used immediately for a decomposition research close to Wonka Tree Nursery.

Leaf litter decomposition was conducted using the standard litterbag technique, as described by (Devendar et al., 2022). Ovendried leaf litter (10 g per batch) was placed in individual 20×20 cm plastic mesh bags with a 2 mm mesh size. These litterbags were then returned to the study site and randomly distributed on the soil surface across three separate plots using a randomised block design. To simulate natural conditions, the bags were positioned just beneath the existing litter layer, soil-dwelling allowing exposure to decomposers ambient weather and conditions. Each bag was secured to the forest floor using wooden pegs to prevent displacement and maintain close contact with the litter layer near the Wonka Nursery Site.

Twelve litterbags were placed in each of the three 20×20 m plots (replicates), resulting in 36 sample bags (three species \times three replicates \times four sampling times). Initial chemical analysis was conducted on the litter, after which three litterbags per species were randomly collected each month over a

four-month period, following the procedure outlined by (Devendar et al., 2022). During collection, any attached material was removed, and the litter was carefully cleaned to remove roots and debris. The samples were then oven-dried at 70 °C for 24 h to reach a constant weight before undergoing further chemical analysis.

2.3. Chemical analyses

At the Debrezeit Research Center, ovendried litter samples were crushed and passed through a 0.5 mm mesh sieve to determine total nitrogen (N),phosphorus potassium (K), carbon (C), polyphenols, and lignin levels. The micro-Kjeldahl method was used to measure total nitrogen. It involved digesting 0.5 g of the material in 10 ml of concentrated H₂S₃ with a catalyst mixture of CuSO₃, K₂SO₃, and selenium, followed by distillation (Aguirre, 2023). Phosphorus was evaluated by wet acid digestion (Flindt et al., 2020) and measured colorimetrically at 410 nm with spectrophotometre. The same extract was tested for potassium content using a flame photometer (Sharma & Sarmah, 2013). Provin (2014) described the dry combustion method used to calculate total carbon. The lignin and polyphenol contents were determined using the methods described by Constantinides and Fownes (1994) and Gomes et al. (2011), respectively.

2.4.Data analysis

The decomposition or nutrient release rate constant (K) for each variable was

calculated using the negative exponential decay model: $Xt = X_0 * e^{-kt}$ (Wang & Xu, 2013), where Xt represents the remaining mass (g) or nutrient content (mg/g) at time t, X_0 is the initial mass or nutrient content, e is the base of the natural logarithm (e ≈ 2.718), and t is time in months. To estimate the decomposition rate constant (K per month), The exponential model was transformed to a natural logarithm, i.e., $ln(X_t/X_0) = --kt$, The half-lives ($T_{0.5}$)—the time required for 50% of the material or nutrient to decompose—was determined using the equation: $Xt/X_0 = 0.5$ (Zhou et al., 2023), with Xt and X0 defined as above.

All statistical analyses were performed using the JMP 11 software. To assess variations, one-way analysis of variance (ANOVA) was used, and means comparisons were performed using Tukey's Honestly Significant Difference (HSD) test, with significance set at 0.05.

3. Results

3.1. Leaf litter nutrient composition

C. macrostachyus and H. abyssinica had higher concentrations of N and P, but lower concentrations of C than C. africana. The chemical constituents of leaf litter showed significant (p < 0.05) differences between treatments. The leaf litter nutrient content (C, N, P, and K) of each species was evaluated, with C. macrostachyus having significantly higher K (P < 0.05) than the others (Table 1).

Tree species	C	N	P	K
C. africana	434.61±0.61a*	12.21±0.14b	1.17±0.03b	6.23±0.01b
C. machrostachyus	429.15±1.51ab	15.31±0.24a	1.08±0.03a	8.45±0.03a
H. abyssinica	428.38±1.47b	15.62±0.37a	1.21±0.03a	4.06±0.11b

Table 1. Major nutrient composition of leaf litter of selected tree species (mg/g, n=12 per species)

C. africana had significantly higher concentrations (P < 0.05) of C:N, lignin, polyphenol/N, polyphenol, and lignin+polyphenol:N in its leaf litter compared to abyssinica H. and C. macrostachyus. The order of lignin,

polyphenol, lignin:N, C:N, polyphenol/N, and lignin+polyphenol:N contents was *C. africana* > *C. machrostachyus* > *H. abyssinica* (Table 2).

Table 2. Lignin and polyphenol composition of leaf litter of the tree species (%)

	Tree species			
Parameters	C. africana	C. machrostachyus	H.abyssinica	
C/N	35.59±0.36a	28.05±0.54b	27.46±0.59b	
Lignin (Lign)	25.51±3.35a	13.22 ± 1.43 ab	9.62±4.86b	
Lignin/N	$20.91 \pm 2.85a$	$8.67 \pm 1.08b$	6.22±3.19b	
Polyphenol (Poly)	$5.68 \pm 0.75a$	$3.23 \pm 0.96b$	2.11±0.01b	
Polyphenol/N	4.64±0.57a	2.13±0.67b	1.36±0.04b	
Poly+Lign/N	25.55±3.14a	$10.80 \pm 1.74b$	7.57±3.20b	

^{*} Values are expressed as mean \pm standard error of the means. .Means followed by the same letter in a column are not significantly different at $P \le 0.05$ as determined by Tukey Honest Significant Difference (HSD) test.

3.2. Decomposition and nutrient release

Analysis of variance revealed highly significant differences (P < 0.001) in mass

loss and nutrient release among the leaf litters of *C. africana*, *C. macrostachyus*, and

^{*} Values are expressed as mean \pm standard error of the means. Means followed by the same letter in a column are not significantly different at P \leq 0.05 as determined by Tukey Honest Significant Difference (HSD) test.

H. abyssinica, with C. africana differing significantly from H. abyssinica and C. macrostachyus (Figure 2). These three species exhibited distinct decomposition patterns. Leaf litter from H. abyssinica showed the fastest rates of mass loss and nutrient release, particularly for nitrogen, phosphorus, and potassium. C. macrostachyus exhibited a similar trend, closely matching H. abyssinica, whereas C. africana decomposed more slowly and released nutrients at a slower rate.

Approximately 50% of the applied biomass was lost during the first 2-3 months for H. abyssinica and 3-4 months for C. macrostachyus; however, C. africana took 7-8 months to lose the same amount of mass. Carbon (C), nitrogen (N), and phosphorus (P) half-lives were attained in 2-3 months for H. abyssinica and 3-4 months for C. macrostachyus.

In contrast, *C. africana* reached the half-life of phosphorus at 6-7 months, carbon at 8-9 months, and nitrogen at 7-8 months. Potassium (K) showed the fastest turnover, with half-lives of 1-2 months for *H. abyssinica* and *C. macrostachyus*, and 2-3 months for *C. africana* (Figure 2). These findings highlight the variation in nutrient release rates (k-values) among species, as revealed by their respective half-lives.

4. Discussion

4.1. Leaf litter nutrient content

According to Sayer (2006), analyzing the nutritional content of leaf litter is critical for understanding the soil conditions that support plant communities. As mentioned by Osman and Osman (2013), leaf litterfall is an important pathway for returning nutrients and dead organic matter from aerial plant parts to the soil surface. This study found that the nutritional composition of the various treatments differed considerably (p < 0.05).

C. macrostachyus had considerably greater amounts of potassium (K) (p < 0.05) in leaf litter compared to C. africana and H. abyssinica. Furthermore, C. africana showed lower quantities of N and P than C. macrostachyus and H. abyssinica (Table 1), indicating inherent species features.

The study also found that the P content was lower (Table 1) in the abscised leaves of all three tree species than that of N and K. This discovery is consistent with recent studies (Getachew et al., 2015, 2016; Meier & Leuschner, 2014), which found that trees absorb (re-translocate) more than half of the P from deciduous leaves before they fall. Phosphorus is one of the most closely cycled main nutrients in plants, with perennials often reabsorbing 40-65% of N and P from their leaves prior to abscission (Estiarte et 2023). This mechanism recycles nutrients internally and uses them to create new tissues (Brant & Chen, 2015; Gonzales & Yanai, 2019).

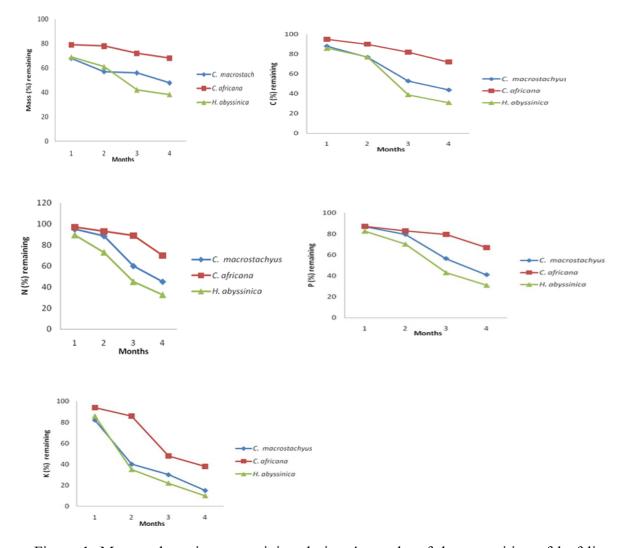


Figure 1. Mass and nutrients remaining during 4 months of decomposition of leaf litter of *C. africana*, *C. macrostachyus* and *H. abyssinca*

4.2. Decomposition and nutrient release

During the 4-month decomposition period, the mass loss and nutrient release rates for *C. macrostachyus* and *H. abyssinica* exceeded 50%, whereas those for *C. africana* were less than 50%, with the exception of potassium. This means that *C. macrostachyus* and *H. abyssinica* degrade and release nutrients more quickly than *C. africana*. This finding is consistent with a study by Biru et al. (2022), who found that mass loss and nutrient release for *C.*

macrostachyus exceeded 50% during a 12-week decomposition experiment. Furthermore, Teklay (2007) observed only 43% mass loss for *C. africana* after 16 weeks.

Climate and litter quality parameters influence litter decomposition rates (such as leaf hardness, N, P, lignin content, and polyphenols) (Xu et al., 2010). This study focused primarily on litter quality because it has a greater impact on decomposition than climate conditions (Prieto et al., 2019).

Limiting elements such as nitrogen (N) and phosphorus (P) also have an impact on decomposition and nutrient release rates. According to Berg et al. (2020), the availability of these elements determines the initial decomposition stage, whereas carbon loss in later stages is caused by the degradation of recalcitrant components, such as polyphenols and lignin. According to Abay (2018), nitrogen is a useful predictor of early decomposition rates, whereas lignin and polyphenols are important in the later stages. The early decomposition variables from those influencing decomposing litter, which affects soil organic matter and carbon sequestration, with similar variables having opposing effects at different stages (Gill et al., 2022).

In this study, the nitrogen contents and chemical composition of leaves were investigated from H. abyssinica, macrostachyus, and C. africana. The results revealed that H. abyssinica and C. macrostachyus had much higher nitrogen concentrations than C. africana, which had higher levels of lignin, polyphenols, and lignin/N ratios. C. africana's sluggish decomposition could be attributed to its lower nitrogen concentration and greater C:N ratio of lignin, polyphenol, lignin/N, polyphenol/N, and lignin+polyphenol/N when compared to *H. abyssinica* and *C.* macrostachyus. These findings support Sánchez et al. (2018), who observed that higher initial concentrations of polyphenols and lignin, as well as their nitrogen ratios (polyphenol/N, lignin/N, lignin polyphenol/N, and C/N), result in slower breakdown and nutrient release.

Kumar and Goh (2003) notes that plant materials with N content below 1.7%, lignin content above 15%, polyphenol content exceeding 3%, and a C/N ratio greater than 20 typically immobilize nitrogen. However, this does not apply to all species. In this study, *C. africana*, *C. macrostachyus*, and *H. abyssinica* did not fit this generalization, as their N content and C/N ratios exceeded these limits. Additionally, *C. macrostachyus* did not immobilise N despite having over 3% polyphenol content.

litter quality attributes of *C*. The macrostachyus, including C, N, polyphenol, and lignin concentrations and ratios, are similar to those observed by Gindaba et al. (2004), but the P, C/N, and lignin/N ratios were higher in this study as compared to Gindaba et al. (2004) and; Mahari (2014). C. africana's C, N, and P values were similar to those of Mahari (2014), but the C/N, lignin, and lignin/N ratios were higher in this study.

A lignin content exceeding 15% can hinder or delay nitrogen release (Rahman & Motiur, 2012), as 15% lignin is critical for decomposition, obstructing cellulose degradation (Khan & Ahring, 2019). This aligns with the current study, which found reduced nitrogen release and decomposition for *C. africana*, which had a lignin content above 15% (Table 2).

The slower nitrogen release from *C. africana* compared to *H. abyssinica* and *C. macrostachyus* may be due to tannin-protein interactions causing microorganism toxicity and resistance to substrate degradation (Olumuyiwa et al., 2020). Additionally,

polyphenols may form non-degradable complexes with cell wall carbohydrates, thereby contributing to protein precipitation (Silanikove et al., 2001).

This study supports Li et al. (2011) findings that low-quality litter, characterized by lower N concentration and higher C/N ratio, decomposes more slowly than high-quality litter, implying that the N content of leaf litter in the initial decomposition stage is a reliable predictor of the decomposition rate. According to Giweta (2020), nitrogen from litter decomposition helps meet the needs of decomposers and stimulates decomposition.

A study by Zhao et al. (2022) highlighted that decomposition rates are influenced by both nutrient content and morphological characteristics. For example, leaf surface structure and physical toughness can affect decomposition rates, as noted by (Pérez-Harguindeguy et al., 2000). This study observed that C. africana decomposed more slowly because of its thick and tough leaves with major veins and midribs, likely due to higher lignin concentration. Conversely, C. macrostachyus and Н. abyssinica decomposed faster, attributed to their thinner, softer leaves and lower lignin concentration. Akinyele and Donald-Amaeshi (2021) reported similar findings, noting that C. macrostachyus decomposes more quickly owing to its lower lignin content and softer leaves.

In general, *C. macrostachyus* and *H. abyssinica*, while decomposing rapidly, may not significantly contribute to short-term soil organic carbon, but can supply nutrients to crops. *C. africana*, with slower

decomposition and lower nitrogen release within 4 months, may be less effective for annual cropping systems but could be more important for perennial systems where nutrients are required over longer periods.

5. Conclusion

The study found substantial differences in nutrient composition and decomposition rates across the tree species namely *C. africana*, *H. abyssinica*, and *C. macrostachyus*. *H. abyssinica* and *C. macrostachyus* exhibited faster mass loss and nutrient release, but *C. africana* had lower nitrogen content and higher quantities of lignin and polyphenols, resulting in slower decomposition and delayed nutrient release.

It is recommended that all three species be incorporated into agroforestry operations, as their combined contributions provide both immediate and long-term advantages. *H. abyssinica* and *C. macrostachyus* improve soil fertility by decomposing quickly, whereas *C. africana* ensures soil surface stability over time. Furthermore, fast and slow decomposing species provide significant goods and ecosystem services that contribute to long-term agricultural output.

Future studies should evaluate seasonal differences in litter quality, extend decomposition monitoring beyond four months, and examine the impacts of microbial activity and litter mixing. Long-term influences on soil parameters as well as the relationship between decomposition rates and crop performance should also be

investigated. These findings will help guide the effective usage of these species in agroforestry systems.

Acknowledgements

The Authors are grateful to Debre Markos University for financial support to this research work and also Debre Zeit Agriculture Research Center for allowing us to do soil and plant nutrient analysis in its Laboratory

6. References

- Abay, A. (2018). Nitrogen release dynamics of Erythrina abyssinica and Erythrina brucei litters as influenced by their biochemical composition. *African Journal of Plant Science*, 12(12), 331-340.
- Aguirre, J. (2023). Experimental: Evaluation of Titanium Dioxide as a Catalyst in the Determination of Nitrogen by the Kjeldahl Method. In *The Kjeldahl Method: 140 Years* (pp. 105-121). Springer.
- Akinyele, A. O., & Donald-Amaeshi, U. (2021). Leaf litter decomposition and nutrient release of three selected agroforestry tree species. *Agroforestry Systems*, 95, 559-570.
- Bani, A., Pioli, S., Ventura, M., Panzacchi, P., Borruso, L., Tognetti, R., Tonon, G., & Brusetti, L. (2018). The role of microbial community in the decomposition of leaf litter and deadwood. *Applied soil ecology*, 126, 75-84.
- Bekele, T., & Abebe, W. (2018). Indigenous woody species regeneration under the canopies of exotic tree plantations at Tore Forest, Gelana

- District, Southern Oromia, Ethiopia. *Biodiversity International Journal*, 2(1), 1-6.
- Berg, B., McClaugherty, C., Berg, B., & McClaugherty, C. (2020). Role of chemical constituents in regulating decay rates and stable fractions: effects of initial and changing chemical composition on decomposition and organic matter accumulation. *Plant Litter: Decomposition, Humus Formation, Carbon Sequestration*, 129-163.
- Biru, K. H., Estifanos, S., & Kebede, D. (2022). Litter decomposition Rate and Nutrient Release Pattern of Selected Indigenous Agroforestry Tree Species, Jimma Zone, South Western Ethiopia Haramaya University].
- Brant, A. N., & Chen, H. Y. (2015). Patterns and mechanisms of nutrient resorption in plants. *Critical reviews* in plant sciences, 34(5), 471-486.
- Constantinides, M., & Fownes, J. (1994).

 Nitrogen mineralization from leaves and litter of tropical plants: relationship to nitrogen, lignin and soluble polyphenol concentrations.

 Soil Biology and Biochemistry, 26(1), 49-55.
- Devendar, E., Swaminathan, C., Kannan, S. V., Kannan, P., & Bharathi, M. J. (2022).Evaluating leaf decomposition rate of multipurpose tree species using litter bag technique. Indian Journal of Ecology, 49(5), 1588-1593.
- Estiarte, M., Campioli, M., Mayol, M., & Penuelas, J. (2023). Variability and

- limits of nitrogen and phosphorus resorption during foliar senescence. *Plant Communications*, 4(2).
- Flindt, M. R., Lillebø, A. I., Pérez, J., & Ferreira, V. (2020). Total phosphorus, nitrogen and carbon in leaf litter. *Methods to Study Litter Decomposition: A Practical Guide*, 91-105.
- Getachew, K., Itanna, F., & Mahari, A. (2015). Evaluation of locally available fertilizer tree/shrub species in Gozamin Woreda, North Central Ethiopia. Research Journal of Agriculture and Environmental Management, 4(3), 164-168.
- Getachew, K., Itanna, F., & Mahari, A. (2016). Retranslocation of Nutrients in Three Indigenous Tree Species in Gozamn Woreda, North Central Ethiopia. *Global Journal of Agricultural Research*, 4(6), 20-25.
- Gill, A. L., Adler, P. B., Borer, E. T., Buyarski, C. R., Cleland, E. E., D'Antonio, C. M., Davies, K. F., Gruner, D. S., Harpole, W. S., & Hofmockel, K. S. (2022). Nitrogen increases early-stage and slows latestage decomposition across diverse grasslands. *Journal of Ecology*, 110(6), 1376-1389.
- Gindaba, J., Olsson, M., & Itanna, F. (2004).

 Nutrient composition and short-term release from Croton macrostachyus

 Del. and Millettia ferruginea (Hochst.) Baker leaves. *Biology and fertility of soils*, 40, 393-397.
- Giweta, M. (2020). Role of litter production and its decomposition, and factors affecting the processes in a tropical

- forest ecosystem: a review. *Journal* of Ecology and Environment, 44(1), 11.
- Gomes, D. I., Detmann, E., Valadares Filho, S. d. C., Fukushima, R. S., de Souza, M. A., Valente, T. N., Paulino, M. F., & de Queiroz, A. C. (2011). Evaluation of lignin contents in tropical forages using different analytical methods and their correlations with degradation of insoluble fiber. *Animal Feed Science and Technology*, 168(3-4), 206-222.
- Gonzales, K., & Yanai, R. (2019). Nitrogen–phosphorous interactions in young northern hardwoods indicate P limitation: foliar concentrations and resorption in a factorial N by P addition experiment. *Oecologia*, 189(3), 829-840.
- González-Rodríguez, H., Domínguez-Gómez, T. G., Cantú-Silva, I., Gómez-Meza, M. V., Ramírez-Lozano, R. G., Pando-Moreno, M., & Fernández, C. (2011). Litterfall deposition and leaf litter nutrient return in different locations at Northeastern Mexico. *Plant Ecology*, 212, 1747-1757.
- He, M., Zhao, R., Tian, Q., Huang, L., Wang, X., & Liu, F. (2019). Predominant effects of litter chemistry on lignin degradation in the early stage of leaf litter decomposition. *Plant and Soil*, 442, 453-469.
- Hobbie, S. E. (2015). Plant species effects on nutrient cycling: revisiting litter feedbacks. *Trends in ecology & evolution*, 30(6), 357-363.

- Hossain, M., Siddique, M. R. H., Abdullah, S. R., Saha, S., Ghosh, D. C., Rahman, M. S., & Limon, S. H. (2014). Nutrient dynamics associated with leaching and microbial decomposition of four abundant mangrove species leaf litter of the Sundarbans, Bangladesh. *Wetlands*, 34, 439-448.
- Khan, M. U., & Ahring, B. K. (2019). Lignin degradation under anaerobic digestion: Influence of lignin modifications-A review. *Biomass and Bioenergy*, 128, 105325.
- Kumar, B. M., & Kunhamu, T. (2022).

 Agroforestry research methodology with special reference to the biophysical aspects of tropical homegardens. *Indian Journal of Agroforestry*, 24(3).
- Kumar, K., & Goh, K. (2003). Nitrogen release from crop residues and organic amendments as affected by biochemical composition. *Communications in Soil Science and Plant Analysis*, 34(17-18), 2441-2460.
- Li, L.-J., Zeng, D.-H., Yu, Z.-Y., Fan, Z.-P., Yang, D., & Liu, Y.-X. (2011). Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China. *Journal of Arid Environments*, 75(9), 787-792.
- Mahari, A. (2014). Leaf litter decomposition and nutrient release from Cordia africana Lam. and Croton Macrostachyus Del. tree species. *J Environ Earth Sci*, 4(15), 1-7.

- Meier, I. C., & Leuschner, C. (2014). Nutrient dynamics along a precipitation gradient in European beech forests. *Biogeochemistry*, 120, 51-69.
- Olumuyiwa, E., Amund, O., Ilori, M., & Schmidt, S. (2020). Utilization of tannic acid by bacteria in tropical aquatic and soil environments. *Journal of microbiology, biotechnology and food sciences*, 10(3), 335-343.
- Osman, K. T., & Osman, K. T. (2013).

 Nutrient dynamics in forest soil.

 Forest soils: properties and management, 97-121.
- Pérez-Harguindeguy, N., Díaz, S., Cornelissen, J. H., Vendramini, F., Cabido, M., & Castellanos, A. (2000). Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. *Plant and Soil*, 218, 21-30.
- Prieto, I., Almagro, M., Bastida, F., & Querejeta, J. I. (2019). Altered leaf litter quality exacerbates the negative impact of climate change on decomposition. *Journal of Ecology*, 107(5), 2364-2382.
- Provin, T. (2014). Total carbon and nitrogen and organic carbon via thermal combustion analyses. *Soil test methods from the southeastern United States*, 149-154.
- Rahman, M. M., & Motiur, R. M. (2012).

 Quantitative chemical defense traits,
 litter decomposition and forest
 ecosystem functioning. *Forest*

- Ecosystems—More than Just Trees. Rijeka, Croatia: InTech, 295-315.
- Robertson, G. P., & Paul, E. A. (2000). Decomposition and soil organic matter dynamics. In *Methods in ecosystem science* (pp. 104-116). Springer.
- Sánchez, G., del Pino, A., & Hernández, J. (2018). Decomposition of Eucalyptus sp. and Pinus taeda harvest residues under controlled temperature and moisture conditions. *Open Journal of Forestry*, 8(01), 87.
- Sarvade, S., Singh, R., Prasad, H., & Prasad, D. (2014). Agroforestry practices for improving soil nutrient status. *Popular Kheti*, 2(1), 60-64.
- Sayer, E. J. (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. *Biological reviews*, 81(1), 1-31.
- Sharma, B., & Sarmah, D. (2013). A comparative evaluation of sodium and potassium measurements by flame photometer and by direct ISE methods. *Int J Health Sci Res IJHSR*, 3, 59-65.
- Silanikove, N., Perevolotsky, A., & Provenza, F. D. (2001). Use of tannin-binding chemicals to assay for tannins and their negative postingestive effects in ruminants.

 Animal Feed Science and Technology, 91(1-2), 69-81.
- Teklay, T. (2007). Decomposition and nutrient release from pruning residues of two indigenous agroforestry species during the wet

- and dry seasons. *Nutrient Cycling in Agroecosystems*, 77, 115-126.
- Vahdat, E., Nourbakhsh, F., & Basiri, M. (2011). Lignin content of range plant residues controls N mineralization in soil. *European Journal of Soil Biology*, 47(4), 243-246.
- Wang, Z., & Xu, W. (2013).

 Decomposition-rate estimation of leaf litter in karst forests in China based on a mathematical model.

 Plant and Soil, 367, 563-577.
- Xu, G., Hu, Y., Wang, S., Zhang, Z., Chang, X., Duan, J., Luo, C., Chao, Z., Su, A., & Lin, Q. (2010). Effects of litter quality and climate change along an elevation gradient on litter mass loss in an alpine meadow ecosystem on the Tibetan plateau. *Plant Ecology*, 209, 257-268.
- Zhao, Y.-Y., Li, Z.-T., Xu, T., & Lou, A.-r. (2022). Leaf litter decomposition characteristics and controlling factors across two contrasting forest types. *Journal of Plant Ecology*, 15(6), 1285-1301.
- Zhou, X., Dong, K., Tang, Y., Huang, H., Peng, G., & Wang, D. (2023). Research progress on the decomposition process of plant litter in wetlands: A review. *Water*, 15(18), 3246.
- Zhu, X., Zou, X., Lu, E., Deng, Y., Luo, Y., Chen, H., & Liu, W. (2021). Litterfall biomass and nutrient cycling in karst and nearby non-karst forests in tropical China: A 10-year comparison. *Science of The Total Environment*, 758, 143619.