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Abstract

Pedestrian detection and tracking in disaster-prone areas, such as valleys, deserts, beaches, and
mountainous regions, present significant challenges due to the rugged terrain, dense vegetation,
and the lack of advanced technology, especially in rural regions like Ethiopia. These challenging
environments complicate the task of locating individuals, increasing the risk of them being lost
during emergencies. The absence of reliable detection systems exacerbates the difficulty in
providing timely rescue and relief operations. To address these challenges, we propose a deep
learning-based model using video datasets collected through experimental methods, as well as
data from publicly available sources. This combination of data enhances the model's ability to
detect and track pedestrians effectively across a variety of disaster scenarios, ensuring its
applicability to real-world conditions. Fourier Transform is applied to reduce noise and filter
images, resulting in cleaner and more reliable inputs for the detection model. The processed
datasets are then used within a transfer learning framework to develop a rapid and accurate
pedestrian detection model based on the YOLOv7 architecture. This model is further integrated
with Kalman filters to enable robust tracking of pedestrians, ensuring consistent performance
even in dynamic and complex environments where traditional methods struggle. The proposed
YOLOv7-based approach achieves a detection accuracy improvement of over 5% compared to
existing state-of-the-art methods, including YOLOV2, ResNet, YOLOv3, YOLOv4, and YOLOV6.
This improvement highlights the model's effectiveness in enhancing situational awareness and
supporting emergency response efforts by accurately identifying and tracking individuals in
disaster-affected areas. The conclusions from this research indicate that the proposed system
provides a reliable and practical solution for aiding rescue and relief operations in challenging
environments, ultimately contributing to improved disaster management outcomes.

Keywords. Pedestrian detection and tracking; Transfer learning; Deep learning, YOLOV7.

1. Introduction

In Ethiopia, the majority of the population safety of these individuals is not adequately
resides in rural areas, where people often monitored by governmental or scientific
travel long distances to reach urban centers means, due to the remote locations,
and exchange goods (Abate et al. 2020). insufficient infrastructure, and lack of
These journeys are fraught with risks, as attention to rural regions.

travelers  frequently encounter natural Traditional methods of tracking pedestrians
disasters such as landslides, floods, and in rural areas are often inadequate for
other hazards. Despite the dangers, the surveillance in challenging environments
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such as mountainous, desert, or valley
regions. Various solutions have been
proposed by scholars to address these
limitations, including sensor networks (Xu,
Liang, and Xu 2014),Wi-Fi network base
stations (X. Chen et al. 2023), and fixed
cameras (J. Chen et al. 2024). However,
these approaches are not cost-effective and
require significant effort due to poor
infrastructure. Datasets collected using these
techniques in rural and disaster areas are
significantly impacted by high data rate
fluctuations and blockages caused by high-
rise mountains or valleys. Moreover,
challenges remain in identifying specific
individuals in disaster locations, as
pedestrian movements are dynamic across
varying locations and altitudes. For instance,
traditional methods struggle to track large
areas with rapid changes due to their limited
coverage and the mobility of individuals.

In contrast, UAV-based data collection
techniques offer a more viable solution due

Figure
Various deep-learning algorithms have been
proposed to address pediatric detection and
tracking, including You Only Look Once
(YOLOvV3) (Zhong and Meng 2019),
YOLOV2, DeepSort (Ma et al. 2019), and a
hybrid approach combining YOLOv2, Long-
Short Term Memory (LSTM), and
Reinforcement Learning (RL) (C. X. Zhao et
al.  2020). However, the tracking
performances typically often struggle with
accuracy in complex environments (Luo et
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to their portability, ease of access, and
ability to capture data across diverse
terrains, including hills and valleys (K.
Wang et al. 2024). UAV-based data
collection is employed to gather large
datasets from sources such as disaster areas,
where object detection and tracking
applications are highly crucial. UAV
technology provides a state-of-the-art
solution for tracking systems, particularly in
difficult-to-reach areas such as earthquake
zones, floodplains, valleys, beaches, and hot
regions (Hildmann and Kovacs 2019; Diaz
et al. 2019). For example, in the Nile Gorge
area in Ethiopia, as shown in Fig. 1, the
terrain is vulnerable and difficult to monitor.
While UAV technology equipped with high-
quality cameras provides a straightforward
solution for addressing these challenges, few
have attempted to utilize it effectively for
this purpose.

al. 2018), particularly in locations with
blurring effects due to mountainous terrain.
Moreover, the majority of the work has not
focused on rural and disaster areas.
Moreover, although data optimization
improves model accuracy, most studies
apply object detection without it, resulting in
less accurate outcomes compared to state-of-
the-art performances (Zhong and Meng
2019).
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In this research, a deep learning-based
method for detecting and tracking multiple
pedestrians is proposed, utilizing a transfer
learning  architecture.  This  approach
combines experimental and  publicly
available datasets. The experimental data is
collected using high-resolution images from
smartphones and digital cameras, providing
a comprehensive understanding of the
phenomenon being studied. By integrating
these datasets with publicly available
sources, the approach offers a more
complete perspective, allowing for deeper
analysis and interpretation. This innovative
combination leverages the strengths and
adaptability of both types of datasets,
leading to more accurate and reliable
conclusions. YOLOV7 with transfer learning
is employed for robust object detection,
allowing the newly developed model to
leverage knowledge from existing models
and efficiently generate a more accurate and
adequate new model. In the new model, the
Kalman filter is integrated with YOLOV7 to
associate frames and track pedestrians in
motion. The following are the main
contributions of this work:

1. By integrating experimental and
publicly available data, the
approach  provides a more
comprehensive understanding of
the phenomenon, facilitating
richer analysis and more
informed conclusions.

2. A fast and accurate pedestrian
detection model is developed
using YOLOv7, incorporating
Fourier Transform and transfer
learning to minimize noise and
improve data quality.

3. YOLOv7 is combined with
Kalman filters for robust
tracking, enabling the association
of sequential frames and
enhancing target tracking
performance.
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4. The proposed system
outperforms state-of-the-art
methods (YOLOv2, ResNet,
YOLOv3, YOLOv4, and
YOLOvV6) by achieving higher
detection  accuracy  through

YOLOV7 with transfer learning.

The remaining sections are structured as
follows: Section Il reviews relevant surveys.
Section 111 outlines the proposed method and
algorithm usage. Section IV  details
simulation setups, and findings and provides
an analysis. Section V concludes the paper
and discusses future directions.

2. Related Works

Pedestrian detection and tracking in disaster
areas is a challenging task that requires
efficient and accurate methods to ensure
timely response and rescue efforts. Recently,
deep learning algorithms have shown
promising results in various computer vision
applications, including object detection and
tracking. Object detection and tracking are
crucial tasks in various applications,
including object recognition and
classification. Tracking involves the process
of associating the location of a targeted
object from one frame to the next in a
sequence of images or visual data (Bohush
et al. 2020). Multi-object tracking tasks
comprise the association or integration of
segmented motion objects in continuous
images of a video sequence. Several studies
have been conducted on object detection and
tracking using deep learning-based
approaches. For instance, (Ye et al. 2018)
proposed a deep learning-based model to
estimate UAV motion, utilizing CNN for
feature extraction and the Kalman filter to
improve temporal consistency and reduce
false alarm rates. The precision ranged from
81% to 82%, and accuracy reached 95%.
However, the  multi-stage  detection
technique used in this approach is time-
consuming.
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In contrast, YOLOv3 (L. Zhao and Li 2020)
showed better computational costs compared
to other algorithms such as Single Shot
MultiBox Detector (SSD), Deconvolutional
Single Shot Detector (DSSD), Region-based
Fully Convolutional Networks (R-FCN), and
Residual Network (ResNets). Most region-
based algorithms, including R-CNN and fast
R-CNN, face longer and more complex
calculations to extract features, which leads
to slower computational costs and loss of
relevant  image  information  during
continuous tracking. YOLOv1 and YOLOvV2
are sensitive to image backgrounds and
positions, resulting in unbalanced detection
speed and accuracy (Diaz et al. 2019) and
(Dutra and Orth, 2020.). In Dutra and Orth,
2020), the authors aimed to design a system
using a hybrid of YOLOvV2 and deep sorting,
with the Kalman filter used for backend
error smoothing during tracking. The system
performance showed an average accuracy
ranging from 68.7% to 86.8%.

(Behera et al. 2017) used CNN
algorithms in transfer learning for Crowd
Density Detection and Classification on
video surveillance systems, achieving an
average accuracy of 96.66%. In (Narmadha
et al. 2023), a ResNet-based Faster R-CNN
was applied to detect and track objects, with
manual data annotation and preprocessing
followed by evaluation on three benchmark
video datasets. In contrast to these
approaches, (L. Zhao and Li 2020) used the
SSD technique without preprocessing, while
(Bochkovskiy, Wang, and Liao 2020)
utilized the YOLO approach for object
detection, both eliminating the need for
additional region proposal networks.

Several studies have focused on pedestrian
detection using deep learning algorithms.
For example, (Li et al. 2020) proposed a
real-time pedestrian detection system using a
DNN and a kalman filter for tracking. The
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system achieved a precision of 92% and a
recall of 95%. In terms of tracking, (Csonde,
Sekimoto, and Kashiyama 2022) proposed a
real-time pedestrian tracking system using a
combination of CNN and optical flow
estimation. The system tracked pedestrians
with an average precision of 90% and an
average recall of 92%. Another study
(Sighencea, Stanciu, and Caleanu 2021)
discussed a recurrent neural network (RNN)
to track pedestrians in videos, achieving an
average precision of 95% and an average
recall of 98%. In (Ldépez-Randulfe et al.
2021), the authors proposed a system that
uses a CNN to detect pedestrians in images
taken from aerial vehicles during disasters.
The system achieved an accuracy of 95%
and a precision of 90%. Another study (Y.
Wang, Shi, and Wu 2019) used a DNN to
track pedestrians in videos taken from
ground-based cameras during disasters,
achieving an average precision of 92% and
an average recall of 95%.

Other studies have focused on improving the
performance of pedestrian detection and
tracking systems by combining multiple
techniques. For example, (Hildmann and
Kovacs 2019; Diaz et al. 2019) proposed a
system that uses a CNN to detect pedestrians
and a Kalman filter to track them. The
system achieved an accuracy of 98% and a
precision of 95%. Another study used an
RNN to track pedestrians and a CNN to
detect them, achieving an average precision
of 95% and an average recall of 98%.

Overall, these studies demonstrate the
potential of deep learning algorithms for
pedestrian detection and tracking in disaster
areas. However, there is stillroom for
improvement, especially in terms of real-
time performance and robustness to varying
environmental conditions.
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3. Proposed Methods

3.1. Proposed Architecture

Fig. 2 shows the architecture of a pedestrian
detection and tracking system, combining
YOLOv7 with a Kalman Filter. The system
uses experimental data from real-world
environments like the Abay Gorge region,
along with publicly available datasets, to
train and validate the model. Then,
preprocessing steps such as image
normalization, resizing, and noise reduction
are applied. The data is then split into
training and testing sets. YOLOV7 is fine-
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which was saved as a YOLOv7 (.h5) file.
For tracking, the system employs a Kalman
Filter, which predicts and updates the
positions of detected pedestrians, ensuring
precise monitoring in dynamic
environments. The combined use of
YOLOv7 for detection and the Kalman
Filter for tracking enables real-time, accurate
surveillance. The testing set is used to
validate the system, ensuring it performs
well in real-world scenarios. This system is
ideal for applications such as surveillance,
disaster management, and crowd control,
where real-time detection and tracking are

tuned during training, resulting in a model critical.
capable of accurate pedestrian detection,
é% Public data
- YOLOvT
Optimizer Model(h5)

Data Ienter
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—Training Set—m A -
Preprocessing Train YOLOv7

\_l

Experimental
datasets

| YOLOV7 Mode| i

Y
—
Testing Set

Tracking
Pedestrians

Figure 2. The architecture of the proposed system.

3.2. Data sources

This study utilized two types of data
sources. The first set of datasets was
collected through fieldwork using Nikon
cameras and Samsung M12 and M13
smartphones. A total of 50 video files, each
10 seconds long, were captured in the Abay
Valley region of Ethiopia, Amhara region.
Data was gathered from three distinct
locations, each offering different

perspectives for easily capturing pedestrians.
The second source consisted of 50 video
files, also 10 seconds long, focused on rural
communities in sloping areas. These videos
were sourced from platforms like YouTube

(e.q.,
(https://www.youtube.com/watch?v=1JCy64
adY3Y and

https://www.youtube.com/watch?v=NZ55Bs
C2kn8 ). All video files from both sources
were stored in MP4 format and later
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converted to JPG format for preprocessing.
The data collection period spanned from
January to June 2023.

3.3.Preprocessing

Due to challenges posed by low image
quality—such as dust and reflections from
disaster-prone areas—additional
preprocessing steps were applied, including
histogram equalization, and further noise
removal to enhance the overall quality of the
datasets. Image noise is removed using
Gaussian filtering, which reduces noise and
helps minimize overfitting problems in
model development (Zhong and Meng
2019), as illustrated in Equation (1).

1 2
littered (X, Y)= z

_ Xy
2me2 exp( 262 )* I(x,y )

Here, Ifiiterea (x,y) represents a Gaussian
blur applied to reduce noise in the image,
20, is the standard deviation of the
Gaussian distribution, x and y are pixel
coordinates, and “*” denotes convolution.
To ensure uniformity in image sizes, we
resized them to a standard dimension of
224x224 RGB. This adjustment was
necessary as the images were captured at
varying distances from the camera. To
enhance image quality, we employed
histogram equalization, detailed in Equation
2, which adjusts image intensities to
improve overall contrast.
N (P(x y)) = round(Cdf (px y)-cdfmin

(RxxCx)—cdfmin

(L - 1)> .................................... (2)
Where, N (P(xy)) IS histogram
equalization, cdf refers to cumulative

frequency, Cdf,in 1S @ minimum value of
cumulative distribution function,
Cdf (p(x,y)) is an intensity of the current
pixel, Rx & Cx are product of number of
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pixels in rows and columns and L is number
of intensities.

The segmentation process in YOLOv7
enhances object detection by dividing the
input image into a grid of cells, where each
cell predicts multiple bounding boxes with
confidence scores. These scores indicate
both the likelihood of an object and the
accuracy of the bounding box location
(Lopez-Randulfe et al. 2021). Each cell also
predicts class probabilities, allowing
YOLOV7 to classify objects like pedestrians
or vehicles (C.-Y. Wang, Bochkovskiy, and
Liao 2022). YOLOv7 introduces anchor
boxes, predefined bounding boxes of
various sizes and aspect ratios, to improve
detection accuracy for objects of different
shapes.  Additionally, Non-Maximum
Suppression (NMS) is applied to eliminate
redundant bounding boxes, ensuring each
object is detected only once by selecting the
one with the highest confidence score. This
builds on prior methods in adaptive object
tracking and vehicle tracking using Kalman
filters and Deep Sort with low-confidence
track filtering. The Fourier Transform
exponential function for image enhancement
can be defined as shown in Equation (3).

f_°°oo f(x) g~ 2mixe d

Where f(x) is a function, e 2™*¢d is the
Fourier Transform exponential function,
F(U). Then, we apply confidence of the
prediction that is used to detect objects in a
bounding box, which is calculated as
indicated in Equation (4), which is an
interactive class-based object detection
technique (Lee et al. 2022).

Pr(Pit, ft | V,CN) = Pr(Pit | ft,Ci) = Pr(ft| Ci)
* Pr(Ci)

Where i = [1,2,---,k] denotes the i" person at
a time t, itis the frame of time t, Cyis N
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numbers of classes, and P/ is the person that
could be detected from a given video (V).

The effectiveness of the model was
measured against various ground-truth
values during the in-person class, selecting
the optimal fit based on bounding box
(Bbox) data. The class probability, CN,
varies, and those probabilities that meet a
defined threshold are selected as the ground
truth. Equation (5) demonstrates the
computation of the Intersection over Union
(loV):

area(Cy N area(G)

IoU[ID = i] =

area(Cy U area(G)

Where ¢, is the i"" Bbox in a frame and G is
the Bbox of the ground truth. Then, the loss
function of IoU is formulated as indicated in
Equation (6).

p2(b,b9%)

Liou = 1-1IoU + 2 + av
e e e e et et et et e e e s ..(6)
Where a denotes the hyperparameter

controlling the trade-off and is set a =

Glo)D) according to previous literature.

To associate sequences of Bboxes in
different frames, we apply the Kalman filter
(Ait Abdelali et al. 2016. Let A denote the
processing matrix each time t > 0, then the
state prediction of a Kalman filter is shown
in Equation (7):

St=AxS-1 . (7)
Where s, and S,_, restate predlctlons of the
Kalman filter, and the vector of the process
state at the time t — 1, respectively.

Once a set of satisfactory values is found,
the most similar value pair is calculated
using the cosine similarity (Kumar et al.
2023), by estimating distances between
vectors.  This  technique is  more
straightforward than the Mahalanobis
approach since it is not relatively affected
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easily by the size of images compared to the
Mahalanobis  technique. The  cosine
similarity, sim (F., F,), between vectors of
the successive frames is calculated as shown
in Equation (8):
sim(F,, E,) = Bica Fei :
RN

...(8)
Where F and F represent features of the
bounding box in the current and the next
frames, respectively. F iis the i™ element of
Fc and F,x is the k™ element of the next
frame. After the best similar Bboxes are
obtained using cosine similarity, the logistic
regression is applied to fall the prediction
ranges between [0, 1] to satisfy the
conditional probability. In this study, we
utilize multiple criteria to assess the
effectiveness of the proposed models. These
criteria encompass accuracy, precision, and
recall.

4. Simulation Setup and Results

4.1. Simulation Setup

In our experiments, we varied the heights
and locations from which video data were
captured at disaster sites to assess how
environmental  conditions at  different
altitudes and  distances affect the
performance of our algorithms. Each
experiment involved extensive image
preprocessing, data augmentation, image
segmentation, feature extraction, and
classification using the Adam optimizer. The
Adam optimizer was selected for its adaptive
learning rate and effective regularization
methods, which help mitigate overfitting.
Testing was conducted with different epoch
sizes and a fixed batch size of 32, with the
optimal epoch automatically determined
during training. We utilized data splits of
70%:30%, 80%:20%, and 85%:15% for
training and testing, as shown in Table 1,
with optimal performance observed at the



Abebe B.

85%:15% ratio. This work faced significant
challenges, including integrating multiple
algorithms into a cohesive model and

Journal of Interdisciplinary Studies 8(2024) 1206-1217

optimizing the quality of data collected from
disaster areas during fieldwork.

Table 1. YOLOv7 performances at different ratios.
Training-Testing Ratios Average Accuracy

Optimum Performances

70%:30% 93.17%
80%:20% 96.05% 85%:15% ratio
85%:15% 97.53 %

The performance of the YOLOvV7 model was
evaluated at different training-testing ratios,
as shown in Table 1. With a 70% training
and 30% testing split, the model achieved an
accuracy of 93.17%. Increasing the training
data to 80% and reducing the testing data to
20% improved accuracy to 96.05%. The
highest accuracy, 97.53%, was obtained

object detection and tracking. Selecting an
inappropriate loU threshold can result in
misclassifications and missed targets,
thereby affecting localization accuracy. To
ensure unbiased selection and robust
conclusions, we compare system
performance across loU thresholds of 0.5,
0.55, 0.6, 0.65, 0.7, 0.75, 0.8, and 0.85.
Through this comparative analysis, an loU

when the training data comprised 85% of
the dataset, with the testing data at 15%.
These results suggest that the model's
performance improves as the proportion of
training data increases, with optimal
performance observed at the 85%:15%
training-testing ratio.

threshold of 0.7 is identified as yielding the
highest precision, as depicted in Figure 3.
These findings underscore the significant
impact of loU values on model performance,
highlighting the need for careful
consideration and optimization in object
detection tasks.

4.2. Results and Discussions

Figure 3 illustrates the process of selecting
the optimal loU value, crucial for accurate
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Figure 3. Individual detection performances of the proposed model in different loU values.

Table 2 presents the detection and tracking
performance of individuals using YOLOv7
alone and in combination with Kalman filter
algorithms, respectively. Detection
performance is assessed through precision
and accuracy metrics while tracking
performance is evaluated using confidence
scores. In all activities, there is a significant
overlap between estimated and ground-truth
bounding boxes, resulting in accurate
detection of persons in motion. This leads to
comparable average detection and tracking
performance. Specifically, for different
experimental locations—Ilocation 1, location
2, and location 3—precision rates of 98.7%,
97.9%, and 98.33% are achieved,
respectively. Consequently, the average
precision of the proposed model stands at
98.31%, the average accuracy is 97,53 and
the average confidence score is 97.61,
respectively.

Despite there is a presence of significant
noise in the experimental image datasets, we
achieved accurate and robust detection and

tracking performance due to the superior
capabilities of YOLOvV7 and the continuous
application of optimization techniques such
as early stopping and dropout. However,
variations in camera locations led to minor
discrepancies. For instance, wood and small
objects were occasionally misclassified as
humans, and some individuals were not
correctly grouped into in-person classes.
Nevertheless, the accuracy and average
precision of YOLOvV7 remained above 95%.
The confidence scores for the combination
of YOLOv7 and the Kalman filter across
different testing locations exceeded 96%,
demonstrating the robustness of the
proposed model. Generally, the accuracy
was consistent across varying heights. Our
proposed system, which integrates YOLOvV7
and Kalman filters, effectively addresses
these challenges due to YOLOv7's rapid
detection capability and the Kalman filter's
bounding  box  association  capacity.
Additionally, optimization technique es such
as loU and cosine similarity were employed
to further enhance accuracy.

Table 2. YOLOV7 -based Pedestrian Detection and Tracking Performances.

Detection Performances

Scenarios Precision

Accuracy Confidence- Score

Locationl 98.7 %,

98.38 % 96.25 %

Location2 97.9%

96.30 % 99.23 %

Location3 98.33 %

97.9 % 97.36 %

98.31 %

Average values

97.53 % 97.61 %

Table 3 presents a comparison of various
state-of-the-art  algorithms  [YOLOv2,
ResNet, YOLOv3, YOLOv4] with the
proposed model, YOLOv7. YOLOv2 shows
the lowest performance, with a precision of
55.72% and an accuracy of 52.34%. These
low numbers suggest that YOLOv2
struggles with both identifying objects
correctly and maintaining overall accuracy.
ResNet performs better, with a precision of
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79.1% and an accuracy of 76.90%. Although
this is an improvement, ResNet still falls
short of the more recent versions of YOLO
in both precision and accuracy. YOLOv3
enhances detection capabilities with 91%
precision and 90.42% accuracy, and
YOLOv4 achieves 94.8% precision and
91.7% accuracy. However, YOLOv7
outperforms  all  previous algorithms,
attaining the highest precision of 98.31%
and accuracy of 97.53%. This comparison
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highlights the superior performance of
YOLOv7 in detecting and tracking
pedestrians,  demonstrating  significant

improvements in  both precision and
accuracy  over  other  state-of-the-art
algorithms.

Table 3. Comparisons of YOLOvV7 with other algorithms.

Comparison of Detection and Tracking (Testing)
Algorithms Precision Accuracy
YOLOv2 55.72 % 52.34 %
ResNet 79.1% 76.90 %
YOLOvV3 91 % 90.42 %
YOLOv4 94.8 % 91.7 %
OURS(YOLOV7) 98.31 % 97.53 %

Table 4 provides a comparative analysis of
tracking performance between the YOLOvV7-
Kalman Filter and YOLOv6-Kalman Filter
models across three different types of
datasets: publicly available data,
experimental data, and hybrid datasets (a
combination of both publicly available and
experimental data). The YOLOv7-Kalman
filter consistently outperforms the YOLOV6-
Kalman filter across all scenarios. For
publicly available data, the YOLOv7-
Kalman filter achieves an accuracy of
96.76% and a precision of 97.98%,
compared to the YOLOv6-Kalman filter's
87.00% accuracy and 85.10% precision. In
the experimentally collected data, YOLOv7
maintains its superior performance with an
accuracy of 96.11% and precision of
98.00%, while YOLOV6 records a lower
accuracy of 85.12% and precision of
81.80%.

When evaluating hybrid datasets, which
combine both publicly available and
experimental data, the YOLOv7-Kalman
filter achieves the highest performance with
an accuracy of 97.53% and a precision of
98.31%. In contrast, the YOLOv6-Kalman
filter shows a significant decrease in
performance, with accuracy dropping to
79.18% and precision at 85.20%. The
superior performance of the YOLOv7-
Kalman filter can be attributed to the
combination of YOLOv7's advanced
detection capabilities and the Kalman filter's
robust tracking efficiency. Continuous
optimization  techniques, along  with
YOLOv7's fast and precise detection
capabilities, further enhance its
performance. This makes the YOLOv7-
Kalman filter a more reliable choice for
accurate and precise pedestrian detection
and tracking across various data scenarios.

Table 4. YOLOv7-Kalman filter tracking performances.

Accuracy Precision
Data Sources YOLOV7-Kalman YOLOVG6- YOLOVT7- YOLOV6-
Filter (%) Kalman Filter Kalman Filter Kalman Filter
(%) (%) (%)
Publicly Available Data Only 96.76% 87.00% 97.98% 85.10%
Experimental Data Only 96.11% 85.12% 98.00% 81.80%
Hybrid Datasets 97.53 % 79.18% 98.31 % 85.20%

5. Conclusion

This research presents a deep learning-based
model for real-time pedestrian detection and
tracking in disaster-prone areas, utilizing
both experimental and publicly available
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datasets. The use of Fourier Transform for
noise reduction, along with transfer learning,
enhances the model's ability to detect
pedestrians effectively across challenging
terrains  like  valleys, deserts, and
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mountainous  regions.  The  model's
integration of YOLOV7 for precise detection
and Kalman filters for robust tracking
enables it to maintain high performance,
with detection accuracy reaching up to
97.53% and precision of 98.31%. This
performance surpasses existing state-of-the-
art algorithms such as YOLOv2, ResNet,
YOLOv3, YOLOv4, and YOLOv7 as
demonstrated in multiple testing scenarios.
The application of optimization techniques,
such as early stopping and loU threshold
optimization, further  strengthens the
reliability of the system, even in the
presence of noise and varying environmental
conditions. The findings of this study
highlight the potential of the YOLOv7-
based model to contribute meaningfully to
disaster  management by  enhancing
situational awareness and supporting rescue
and relief operations. Additionally, its
adaptability makes it useful in other sectors,
including security, military operations, and
agriculture, where rapid and accurate
detection and tracking are essential. Future
research will focus on incorporating zero-
delay image processing and mobile data
fusion to improve crowd-sensing capabilities
in urban environments, offering even
broader applications for real-time detection
and monitoring technologies using drone
technology.
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